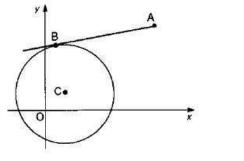

## circles problems

[SQA] 1.

- (*a*) Show that the point P(5, 10) lies on circle C<sub>1</sub> with equation  $(x + 1)^2 + (y 2)^2 = 100$ .
- (*b*) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q.




(c) Two circles,  $C_2$  and  $C_3$ , touch circle  $C_1$  at Q.

The radius of each of these circles is twice the radius of circle  $C_1$ . Find the equations of circles  $C_2$  and  $C_3$ .

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                      | C<br>C<br>A                                                                             | CN<br>CN                                                   | A6<br>G11                                 | proof 2009 P2 Q4                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | -                                                                                       | CN                                                         | C11                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                             | А                                                                                       |                                                            | GII                                       | 3x + 4y + 45 = 0                                                                                                                                                                                                                                                                                                                                                                                                       |
| (c) 4                                                                       | 11                                                                                      | NC                                                         | G15                                       | $(x-5)^2 + (y-10)^2 = 400,$                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                             |                                                                                         |                                                            |                                           | $(x+19)^2 + (y+22)^2 = 400$                                                                                                                                                                                                                                                                                                                                                                                            |
| radius<br>$\bullet^5$ ic: fir<br>$\bullet^6$ ic: sta<br>$\bullet^7$ ic: sta | nd centre<br>e mid-po<br>now to, a<br>nd gradie<br>nte equation<br>te radius<br>now how | and find<br>nt of tar<br>ion of ta<br>ion of ta<br>to find | d gradient of<br>ngent<br>ngent<br>centre | • <sup>1</sup> $(5+1)^2 + (10-2)^2 = 100$<br>• <sup>2</sup> centre = $(-1,2)$<br>• <sup>3</sup> Q = $(-7,-6)$<br>• <sup>4</sup> $m_{rad} = \frac{8}{6}$<br>• <sup>5</sup> $m_{tgt} = -\frac{3}{4}$<br>• <sup>6</sup> $y - (-6) = -\frac{3}{4}(x - (-7))$<br>• <sup>7</sup> radius = 20<br>• <sup>8</sup> centre = $(5,10)$<br>• <sup>9</sup> $(x-5)^2 + (y-10)^2 = 400$<br>• <sup>10</sup> $(x+19)^2 + (y+22)^2 = 400$ |

4

[SQA] 2. AB is a tangent at B to the circle with centre C and equation  $(x-2)^2 + (y-2)^2 = 25$ . The point A has co-ordinates (10, 8). Find the area of triangle ABC.



| Part                                 | Marks                                                                                                           | Level      | Calc.    | Content     | Answer | U2 OC4      |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------|-------------|--------|-------------|
|                                      | 5                                                                                                               | С          | CN       | G9, G1, G15 |        | 1992 P1 Q16 |
| • <sup>2</sup> c<br>• <sup>3</sup> / | trat: <i>i.e</i> fin<br>tentre = (2, 2)<br>AC = 10<br>$AB = \sqrt{75}$ und<br>the area = $\frac{25}{2}\sqrt{3}$ | 2) and rad | dius = 5 |             |        |             |

3. Circle  $C_1$  has equation  $(x + 1)^2 + (y - 1)^2 = 121$ .

A circle C<sub>2</sub> with equation  $x^2 + y^2 - 4x + 6y + p = 0$  is drawn inside C<sub>1</sub>.

The circles have no points of contact.

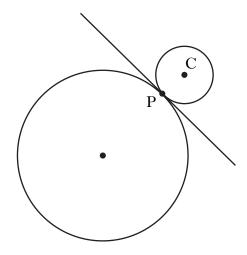
What is the range of values of p?

| Part                                   | Marks                           | Level                                                                                     | Calc.                                                                 | Content                                                                     | Answer                                                                                                                                                                                                                                                                                           | U2 OC4                          |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                        | 9                               | А                                                                                         | CN                                                                    | G9, G15                                                                     | $-23$                                                                                                                                                                                                                                                                                            | 2011 P2 Q7                      |
| •2<br>•3<br>•4<br>•5<br>•6<br>•7<br>•8 | ic: inte<br>ic: finc<br>ss: ide | e radius<br>te centre<br>l radius<br>erpret up<br>l distand<br>ntify relo<br>develop<br>g | of $C_1$<br>of $C_2$<br>of $C_2$ in<br>oper both<br>ce betwo<br>relat | terms of $p$<br>und for $p$<br>een centres, $d$<br>dationship<br>ionship by | • <sup>1</sup> (-1,1)<br>• <sup>2</sup> 11 ( $\sqrt{121}$ not accepted)<br>• <sup>3</sup> (2,-3)<br>• <sup>4</sup> $\sqrt{13-p}$<br>• <sup>5</sup> $p < 13$<br>• <sup>6</sup> 5<br>• <sup>7</sup> $\sqrt{13-p} < 6$ or $r_2 + d < 7$<br>• <sup>8</sup> $13 - p < 36$<br>• <sup>9</sup> $p > -23$ | 11 or <i>r</i> <sub>2</sub> < 6 |

9

- [SQA] 4. Circle P has equation  $x^2 + y^2 8x 10y + 9 = 0$ . Circle Q has centre (-2, -1) and radius  $2\sqrt{2}$ .
  - (a) (i) Show that the radius of circle P is  $4\sqrt{2}$ .

(ii) Hence show that circles P and Q touch.


- (b) Find the equation of the tangent to the circle Q at the point (-4, 1).
- (*c*) The tangent in (*b*) intersects circle P in two points. Find the *x*-coordinates of the points of intersection, expressing you answers in the form  $a \pm b\sqrt{3}$ .

| Part                                                                                                                                                                                                                                    | Marks                           | Level      | Calc. | Content | Answer                                                                                                                                                                                                                                                                           | U2 OC4       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| <i>(a)</i>                                                                                                                                                                                                                              | 2                               | С          | CN    | G9      | proof                                                                                                                                                                                                                                                                            | 2001 P1 Q11  |  |
| <i>(a)</i>                                                                                                                                                                                                                              | 2                               | A/B        | CN    | G14     |                                                                                                                                                                                                                                                                                  |              |  |
| (b)                                                                                                                                                                                                                                     | 3                               | С          | CN    | G11     | y = x + 5                                                                                                                                                                                                                                                                        | -            |  |
| (C)                                                                                                                                                                                                                                     | 3                               | С          | CN    | G12     | $x = 2 \pm 2\sqrt{3}$                                                                                                                                                                                                                                                            |              |  |
| <ul> <li>•<sup>1</sup> ic: interpret centre of circle (P)</li> <li>•<sup>2</sup> ss: find radius of circle (P)</li> <li>•<sup>3</sup> ss: find sum of radii</li> <li>•<sup>4</sup> pd: compare with distance between centres</li> </ul> |                                 |            |       |         | • <sup>1</sup> $C_{\rm P} = (4,5)$<br>• <sup>2</sup> $r_{\rm P} = \sqrt{16 + 25 - 9} = \sqrt{32} = 4\sqrt{2}$<br>• <sup>3</sup> $r_{\rm P} + r_{\rm Q} = 4\sqrt{2} + 2\sqrt{2} = 6\sqrt{2}$<br>• <sup>4</sup> $C_{\rm P}C_{\rm Q} = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ and "so touch" |              |  |
| •6                                                                                                                                                                                                                                      | ss: finc<br>ss: use<br>ic: stat | $m_1m_2 =$ | = -1  |         | • <sup>5</sup> $m_{\rm r} = -1$<br>• <sup>6</sup> $m_{\rm tgt} = +1$<br>• <sup>7</sup> $y - 1 = 1(x + 4)$                                                                                                                                                                        |              |  |
| <ul> <li><sup>8</sup> ss: substitute linear into circle</li> <li><sup>9</sup> pd: express in standard form</li> <li><sup>10</sup> pd: solve (quadratic) equation</li> </ul>                                                             |                                 |            |       |         | • <sup>8</sup> $x^{2} + (x+5)^{2} - 8x - 10(x-5)^{9}$<br>• <sup>9</sup> $2x^{2} - 8x - 16 = 0$<br>• <sup>10</sup> $x = 2 \pm 2\sqrt{3}$                                                                                                                                          | (+5) + 9 = 0 |  |

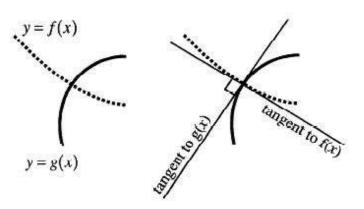
4

3

- 5. (a) (i) Show that the line with equation y = 3 x is a tangent to the circle with equation  $x^2 + y^2 + 14x + 4y 19 = 0$ .
  - (ii) Find the coordinates of the points of contact, P.
  - (*b*) Relative to a suitable set of coordinate axes, the diagram below shows the circle from (*a*) and a second smaller circle with centre C.

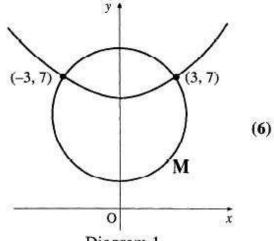


The line y = 3 - x is a common tangent at the point P.

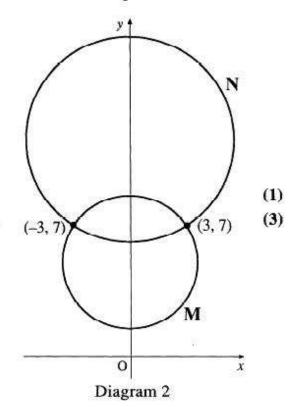

The radius of the larger circle is three times the radius of the smaller circle.

Find the equation of the smaller circle.

| Part                                                | Marks                                                                                                                        | Level                                                                                                      | Calc.                                                             | Content                              | Answer                                                                                                                                                                                                                                                                                                           | U2 OC4     |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (ai)                                                | 4                                                                                                                            | С                                                                                                          | CN                                                                | G13                                  | proof                                                                                                                                                                                                                                                                                                            | 2010 P2 Q3 |
| (aii)                                               | 1                                                                                                                            | С                                                                                                          | CN                                                                | G12                                  | P(-1,4)                                                                                                                                                                                                                                                                                                          |            |
| <i>(b)</i>                                          | 6                                                                                                                            | В                                                                                                          | CN                                                                | G9, G15                              | $(x-1)^2 + (y-6)^2 = 8$                                                                                                                                                                                                                                                                                          |            |
| •2<br>•3<br>•4<br>•5<br>•6<br>•7<br>•8<br>•9<br>•10 | ss: sub<br>pd: exp<br>ic: star<br>ic: con<br>pd: coo<br>ic: stat<br>ss: find<br>ss: find<br>ss: stra<br>ic: inte<br>ic: stat | ress in s<br>t proof<br>nplete pr<br>rdinates<br>e centre<br>l radius<br>d radius<br>tegy for<br>erpret ce | of large<br>of large<br>of large<br>of smal<br>finding<br>ntre of | er circle<br>er circle<br>ler circle | • $x^{2} + (3 - x)^{2} + 14x + 4(3 + 4)^{2}$<br>• $2x^{2} + 4x + 2 = 0$<br>• $32(x + 1)(x + 1)$<br>• $4$ equal roots so line is a tar<br>• $5x = -1, y = 4$<br>• $(-7, -2)$<br>• $\sqrt{72}$<br>• $\sqrt{8}$<br>• $\sqrt{8}$<br>• $9$ e.g. "Stepping out"<br>• $10(1, 6)$<br>• $11(x - 1)^{2} + (y - 6)^{2} = 8$ | ,          |


[SQA] 6.

Two curves, y = f(x) and y = g(x), are called orthogonal if, at each point of intersection, their tangents are at right angles to each other.




(a) Diagram 1 shows the parabola with equation  $y = 6 + \frac{1}{9}x^2$  and the circle M with equation  $x^2 + (y-5)^2 = 13$ . These two curves intersect at (3, 7) and (-3, 7).

Prove that these curves are orthogonal.







- (b) Diagram 2 shows the circle M, from
   (a) above, which is orthogonal to the circle N. The circles intersect at (3, 7) and (-3, 7).
  - Write down the equation of the tangent to circle M at the point (-3, 7).
  - (ii) Hence find the equation of circle N.

| - 1 | Dart | Marko | Loval | Cala  | Content | Anciar | U2 OC4 |
|-----|------|-------|-------|-------|---------|--------|--------|
|     | Part | warks | Level | Carc. | Content | Answer | 02004  |